PKC-mediated GABAergic enhancement of dopaminergic responses: implication for short-term potentiation at a dual-transmitter synapse.
نویسندگان
چکیده
Transmitter-mediated homosynaptic potentiation is generally implemented by the same transmitter that mediates the excitatory postsynaptic potentials (EPSPs), e.g., glutamate. When a presynaptic neuron contains more than one transmitter, however, potentiation can in principle be implemented by a transmitter different from that which elicits the EPSPs. Neuron B20 in Aplysia contains both dopamine and GABA. Although only dopamine acts as the fast excitatory transmitter at the B20-to-B8 synapse, GABA increases the size of these dopaminergic EPSPs. We now provide evidence that repeated stimulation of B20 potentiates B20-evoked dopaminergic EPSPs in B8 apparently via a postsynaptic mechanism, and short-term potentiation of this synapse is critical for the establishment and maintenance of an egestive network state. We show that GABA can act postsynaptically to increase dopamine currents that are elicited by direct applications of dopamine to B8 and that dopamine is acting on a 5-HT3-like receptor. This potentiation is mediated by GABAB-like receptors as GABAB-receptor agonists and antagonists, respectively, mimicked and blocked the potentiating actions of GABA. The postsynaptic actions of GABA rely on a G protein-mediated activation of PKC. Our results suggest that the postsynaptic action of cotransmitter-mediated potentiation may contribute to the maintenance of the egestive state of Aplysia feeding network and, in more general terms, may participate in the plasticity of networks that mediate complex behaviors.
منابع مشابه
PKC - mediated GABAergic enhancement of dopaminergic responses : 1 implication for short - term potentiation at a dual - transmitter synapse
PKC-mediated GABAergic enhancement of dopaminergic responses: 1 implication for short-term potentiation at a dual-transmitter synapse 2 3 Authors: Erik Svensson, Alex Proekt, Jian Jing, and Klaudiusz R. Weiss 4 5 Author contributions: E.S., A.P., and K.R.W. designed research. E.S., A.P., and J.J. 6 performed research and analyzed data. E.S., A.P., and K.R.W. wrote the paper. 7 8 Authors address...
متن کاملMunc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release
Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term ...
متن کاملThe Role of Protein Kinase C in Short-Term Synaptic Plasticity
Short-term synaptic plasticity results from use-dependent activity, lasts on the timescale of milliseconds to minutes, and is thought to underlie working memory and neuronal information processing. Here, we focus on two forms of short-term plasticity: 1) post-tetanic potentiation (PTP), which is induced by high-frequency stimulation, and 2) presynaptic ionotropic receptoractivated synaptic enha...
متن کاملLong-Term Potentiation Selectively Expressed by NMDA Receptors at Hippocampal Mossy Fiber Synapses
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form ...
متن کاملCa-Independent Protein Kinase C Apl II Mediates the Serotonin- Induced Facilitation at Depressed Aplysia Sensorimotor Synapses
At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca-dependent PKC Apl I ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 112 1 شماره
صفحات -
تاریخ انتشار 2014